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Abstract - A dynamic path-planning algorithm is proposed 
for routing UAVs in order to track ground targets. Based 
on a combination of tangent vector field guidance (TVFG) 
and Lyapunov vector field guidance (LVFG), a 
theoretically optimal path is derived with UAV operational 
constraints given a target position and the current UAV 
dynamic state. In this paper, we first illustrate that path 
planning for a UAV tracking a ground target can be 
formulated as an optimal control problem consisting of a 
system dynamic, a set of boundary conditions, control 
constraints and a cost criterion. We then discuss the TVFG 
and LVFG, and demonstrate that the TVFG outperforms 
the LVFG as long as a tangent line is available between the 
UAV’s turning limit circle and an objective circle, which is 
a desired orbit pattern over a target. Particle filters are 
employed in a practical situation where a target is moving 
on a road network.   Obstacle avoidance strategies are also 
addressed. With the help of computer simulations, we show 
that the T+LVFG algorithm provides effective and robust 
tracking performance in various scenarios, including a 
target moving according to waypoints or a random 
kinematics model in an environment that may include 
obstacles and/or wind. 

Keywords: UAV, Target tracking, Path-planning 
algorithm, Particle filters, Obstacle avoidance, TVFG and 
LVFG.  

 

1 Problem Description 
Path planning for multiple UAVs to cooperatively track 
ground targets is an important research topic with 
approaches varying from classical optimal trajectory 
planning to bio-inspired swarm behavior [1], [2], [3]. In this 
paper we formulate the path planning algorithm for a UAV 
tracking a ground target as an optimal control problem 
consisting of a system dynamic, a set of boundary 
conditions, control constraints, and a cost criterion [4], [5], 
[6]. The equation ( ), ,x f t x u=�  describes the time-

evolution of the UAV dynamic state [ ]1 2, ,..., nx x x x= , 

which depends on the control input [ ]1 2, ,..., mu u u u= . A 
cost function for evaluating a particular UAV trajectory 

often contains at least one term of measure describing the 
distance between the final UAV state and the desired UAV 
state. In general, the optimal control problem can be 
formulated as 
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where *x  is the desired UAV state, and ,Χ Ω  are the UAV 
state and control space, respectively. The second term in the 
objective function is the cost of the UAV state trajectory 
along the path from ( )1x t  to ( )2x t . The cost objective in 
(1) is to be minimized in order to produce the optimal 
control solution. However, the overall costs will be UAV 
dependent and could include factors such as power (battery, 
gas) consumption, communication, mission scheduling with 
multiple UAVs and so on. Based on the assumption that 
each UAV has the capability to complete the tracking 
assignment, the cost function is dramatically simplified. In 
this paper, the only physical limitations we considered are a 
UAV’s maximum turn rate and a nominal cruising speed. 
Consequently, the simplified objective is just the distance 
measurement. 

 

Figure 1.  UAV path planning (L) and selected path (R). 

 In the left diagram of Figure 1, UAV starts at point ‘A’ 
with initial velocity v1, and ends at desired endpoint ‘G’ 
with velocity v2. The optimal path (minimal traveling 
distance) follows A B C D E F G in which the 
blue circles correspond to minimal turn radius, the black 
circle corresponds to maximal velocity, the red circle 
corresponds to the current velocity, and the green circle 
corresponds to the final velocity. The optimal path from A 

A

B

E

Cv1

FD
G

v2

12th International Conference on Information Fusion
Seattle, WA, USA, July 6-9, 2009

978-0-9824438-0-4 ©2009 ISIF 363



to G can be illustrated as in the right side of Figure 1. 
Therefore, the optimal control problem can be described as: 
given UAV position and velocity at points A and G, find the 
points B/C/D/E/F such that the cost function is minimized. 
In the subsequent section, we will show that the shortest 
path is found using what we shall call tangent vector 
guidance.  
 The dynamic path-planning algorithm requires the 
following information about the system state: (i) the 
predicted target state; (ii) the current UAV state; and (iii) 
the desired UAV state. In practice, the UAV state at any 
time step is known, and the target state is estimated from 
collected sensor data. The desired UAV state is given by the 
following conditions: (i) the UAV is positioned on a circle 
of fixed radius about the estimated target location; (ii) the 
UAV’s heading is equal to the target’s heading; and (iii) the 
UAV’s speed is equal to the target’s speed unless the target 
speed is less than the UAV’s minimal speed in which case 
the UAV’s speed is set to its minimum. The UAV’s desired 
state is therefore dependent on the target state and can be 
determined through different approaches (e.g., a desired 
position may be chosen to maximize the probability of 
detecting the target at some future time). The UAV vehicle 
control includes a set of possible choices, such as: turn left, 
turn right, ascend, descend, or go straight. 
 
2 UAV Flight Guidance 
2.1 Lyapunov vector field guidance 
Using a Lyapunov vector field guidance law (LVFG) [7], 
the guidance of a UAV to an observation ‘orbit’ around a 
target can be determined by building a vector field that has a 
stable limit cycle centered on the target position. The UAV 
is assumed to be able to move freely but only in the 
direction of its orientation. As defined in [8], the UAV 
dynamics can be modeled as 
 

cos ; sin ;x V y V wθ θ θ= ⋅ = ⋅ =�� �         (2) 
 

where the inputs ,v w denote lateral and angular velocity, 

whose constraints are given by min maxv V v≤ ≤ and wα α− ≤ ≤
. A UAV traveling at constant speed without slipping will 
experience a minimum turning radius so that the angular 

velocity is bounded by /w V R≤ . Assume [ ]T,x y  is the 

two-dimensional inertial position of the aircraft, and 

[ ]T,r rp x y=  is the position of the aircraft relative to the 

target. A Lyapunov vector field law can be used to 
determine the guidance of a UAV by calculating the desired 
velocity. Consider the Lyapunov function Γሺ݌ሻ ൌሺݎଶ െ ܴ௧ଶሻଶ in which ݎ ൌ ඥݔ௥ଶ ൅  ௥ଶ is the radial distance ofݕ
the UAV from the target and ܴ௧ is the radius of the stand-off 
circle. The total time derivative of Γሺ݌ሻ can be specified to 
be non-positive by choosing a desired relative vehicle 
velocity according to the guidance vector field, such that 
[7],  
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in an anti-clockwise direction, or 
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in a clockwise direction, where λ  is a non-negative 
normalization factor.  
 

Figure 2. Clockwise/anti-clock LVFG with 30tR m= . 

 With (3) and (4), the vector field vectors produce a 
non-positive rate of change of ( )Γ ⋅ . If λ  is bounded away 
from zero, ( )Γ ⋅  is zero and invariant only on the standoff 

circle ( tr R= ), it ensures [7] that the vector field produces 
a globally attractive limit cycle. 
 Figure 2 illustrates the guidance vectors surrounding a 
stationary target in anti-clockwise and clockwise 
orientations, respectively. It is clear that a path following the 
field vectors from any point will end up on a circle of radius 
equal to the specified standoff distance (shown in black). 
 
2.2 Tangent vector field guidance 
In [8], we proposed a dynamic path-planning algorithm for a 
UAV that is tracking a ground target. A theoretically 
optimal path was derived with UAV operational constraints 
given a target position and the current UAV kinematic state. 
Since the desired direction is always following the tangent 
line to the standoff circle, we refer to the path planning 
approach as the tangent vector field guidance (TVFG) law. 
The limitation of TVFG is that the UAV must be outside the 
standoff circle; otherwise, a tangent line does not exist and 
the TVFG cannot provide a proper guidance. In that case, 
the proposed strategy in [8] simply moves the UAV forward 
based on its current speed (once the UAV is outside the 
standoff circle, the TVFG can, once again, be used).  
 In general, for any 2D point, ( ),u ux y , outside of an 

objective circle with radius cR and center ( ),c cx y , we can 
easily calculate two tangent points on the circle, such that 
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where ( ) ( )2 2
u u c u cr x x y y= − + − . In that case, 

assuming [ ]T,o ox y is the tangent point on the standoff circle, 

the UAV direction angle can be determined as 
 

                                  ߶௥ ൌ ݊ܽݐܿݎܽ ቂ௬ೠି ௬೚௫ೠି ௫బቃ (6) 

 The desired relative vehicle velocity according to the 
guidance vector field is 
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Figure 3 visualizes the TVFG vectors surrounding a 
stationary target with clockwise and anti-clockwise 
orientations, respectively. It is clear that a path following 
the field vectors from any point will end up on a circle of 
radius equal to the specified standoff distance (shown in 
black). Moreover, it is easy to show the following results: 

Proposition 1. In the sense of shortest distance for 
a UAV going to an objective circle around a target, 
whenever TVFG is available, the optimal UAV 
path is found using the nearest TVFG.  

Proposition 2. As long as the tangent lines are 
available between a UAV’s turning limit circle and 
an objective circle, TVFG provides more efficient 
(in the sense of shortest path) path planning than 
LVFG.  

 Proposition 2 can be directly derived from Proposition 
1. Here we omit the proofs. However, in order to compare 
the performance of the two guidance laws, when any 
tangent lines are available, we introduce distance and time 
efficiency measures to evaluate the UAV path planning 
efficiency. In Figure 4, we present a coordinate diagram 
with UAV, target, and wind, where the red circle is the 
objective trajectory around the target. The distance between 
UAV and target is denoted as “d”. The relative UAV 
heading direction to the target, is denoted ρ , and α  is the 

relative direction of Wind. The distance and time efficiency 
are then defined as /xD d  and /xT V d , respectively. Here 

xD denotes the UAV total flight distance to the objective 

circle, and xT is the total time used to travel to the objective 

circle. V is the average speed of UAV. Notice that in the 
case of a UAV with constant speed, the time efficiency and 
distance efficiency are equivalent. 

Figure 4. Illustration diagram with UAV, target and wind. 

 Figure 5 plots two example trajectories when 0=ρ  

and =ρ π , respectively. The UAV speed is constant at 14 

m/s, the turning limit is /6π , and the sampling period is 1s. 
The objective circle is 30m, target is located at (0,0) and the 
initial UAV is at (100m,100m). When the LVFG provides a 
non-feasible direction due to the current UAV kinematic 
limit, we simply apply the maximum turning rate as in the 
TVFG. For example, the first four initial states from the two 
strategies are the same as shown in the right of the Figure 4. 
Note that in general TVFG provides more efficient 
waypoints to reach the objective orbit. Additionally, we 
observe that the LVFG cannot precisely reach the desired 
orbit. The offsets depend on UAV’s velocity and sampling 
interval. 

 

        Figure 5. Examples of UAV paths with different UAV initial 
heading angles. 

 Figure 6 plots the distance/time efficiency as a 
function of relative angle between 0 to π . Here, in order to 
have a fair comparison, we use the LVFG’s orbit as the 
objective for evaluation. Time and distance efficiency are 
identical since we assume that UAV’s speed is constant. 
Notice that the TVFG performs about 40% better than the 
LVFG. 
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Figure 6. Efficiency Performance of LVFG and TVFG. 

 Unfortunately, there is no tangent line to the objective 
circle when we start from a point within the circle. Thus, we 
can either simply move the UAV forward based on its 
current speed since the target is in the UAV’s field of view 
(FOV) anyway, or use another simple strategy to provide a 
complete guidance.  

2.3 T+L vector field guidance (T+LVFG) 
Here, we propose a hybrid strategy to combine TVFG and 
LVFG, such that whenever UAV is outside the standoff 
circle, we use TVFG, and whenever UAV is inside the 
standoff circle, we use LVFG. We refer to this hybrid 
strategy as the T+LVFG algorithm. Results show that 
whenever TVFG is available, it provides more efficient, 
effective and robust performance to track a target than 
LVFG. Additionally, we noted that LVFG alone has a much 
larger bias to a given objective circle.  
   As the UAV tracks a target along a standoff circle, 
the average distance between the UAV trajectory and the 
standoff circle in steady-state is defined as the average 
steady-state bias (ASB). Since the guidance law when the 
UAV is within the circle is the same for the T+LVFG and 
LVFG alone, we consider the ASB for the T+LVFG and 
LVFG alone only when the UAV starts outside the objective 
circle and attempts to approach and fly along the objective 
circle. Once the UAV reaches the objective circle it attempts 
to fly along the objective circle. Due to the finite sampling 
rate, the UAV cannot fly along the circle exactly but reaches 
a steady state with an error between the objective circle and 
the UAV’s actual flight path.  In general, we have the 
following result: 
 

 Proposition 3. Suppose that a UAV has a speed V  
and a sampling time Δ. In the case of its tracking a 
stationary target along a standoff circle cR , the 

T+LVFG provides much smaller ASB than the 
LVFG alone, such that 

(i) In T+LVFG,  ASB is bounded by 

  2 2 21
4c cR V R+ Δ − ; 

(ii) In LVFG alone, ASB is given by 

          2 3 2 33 3 1
6 cq q p q q p V R− + + + − − + + Δ − , 

where 3 3 21 1
216 3 cq V V R= − Δ − Δ  and 2 2 21 1

36 3 cp V R= − Δ − . 
   The proof of Proposition 3 is straightforward, and 
omitted here. Figure 7 plots the ASBs with different 
sampling intervals and a UAV speed of 14m/s. At the 
objective circle of 40m with one second sampling time, we 
observe that the bias is 0.65m and 6.5m for the T+LVFG 
and the LVFG, respectively. 

Figure 7. Plot of ASB versus objective circle radius and sampling 
interval for the T+LVFG and LVFG approaches. 

2.4 UAV control with winds 
In the presence of a wind field, when expressed relative to a 

moving target [ ]T,t tx y  with velocity [ ]T,t tx y� � , the UAV 

model may be expressed as 
cosr x tx V W xθ= ⋅ + −� �                 (9) 

sinr y ty V W yθ= ⋅ + −� �          (10) 

where xW and yW  are the components of the background 
(horizontal and vertical) wind velocity. Using the wind 
compensations in (9) and (10), LVFG and T+LVFG can 
both be applied to determine the guidance of UAV.   

3 Target Motion Estimation and 
Maximizing Target Detection 

As discussed previously, we base the UAV’s desired 
location on the estimated location of the target. Choosing a 
target location estimate, such as the expected location, may 
be straightforward when the predicted target location 
probability density function (PDF) is uni-modal (e.g., 
Gaussian). However, in many practical ground target 
tracking scenarios, the ground vehicles move through a road 
network, which, due to the presence of road intersections, 
often results in predicted target PDFs that are multi-modal. 
By choosing a location that is close to the expected location 
of the target, we are essentially trying to improve the 
tracking picture through appropriate routing [9]. Under such 
circumstances we need a target state PDF representation 
that can represent multi-modal densities. Moreover, we 
need a basis for choosing the desired UAV location since 
using the expected target location for a multi-modal density 
may yield a location that is nowhere near the target. Thus, 
we use a point-mass approximation of the target state PDF 
and use stochastic simulation to propagate the PDF using a 
ground vehicle motion model that exploits road network 
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information (alternative approaches use target occupancy 
maps that define a piece-wise constant probability mass 
function over a grid, e.g., [10]). Once we generate a 
predicted target state PDF, we determine an “optimal” UAV 
location that maximizes the probability of detecting the 
target. Once we determine this desired UAV position, we 
generate the optimal UAV trajectory using the algorithm 
discussed previously. 

3.1 Coverage in 2D space 
We first discuss the coverage probabilities of a UAV and 
target in a 2D space. This simplified case assumes that the 
UAV and target can move along any directions without 
physical limitations. Figure 8 shows an example in which 
the UAV and target can move in any direction at any time 
instance. In the figure, the UAV is located at point “o”, and 
the tracked target is at point “g”.  
   With two time instances, the orange and light-blue 
circles represent the initial and subsequent (i.e., at the next 
time instance) FOVs of the UAV, respectively. The light-
green circle represents the initial target location uncertainty 
assuming the target is currently located at “g”.  Similarly, 
when target moves to “q”, the purple circle represents the 
predicted target location uncertainty at the next time 
instance. The light brown circle area represents 
corresponding potential UAV positions as it moves from the 
position “o”.  Assuming uniform distributions (equally 
likely to move to all reachable positions) for both UAV and 
target, then at the initial time, the coverage probability is 
one since the orange circle covers the light-green circle 
completely. In other words, the target is fully covered by the 
UAV if the UAV does not move. However, at the next time 
step, the UAV has moved to point “p” and the target has 
moved to point “q”.  The coverage probability is then 
defined as the fraction of the purple circle that is covered by 
the light-blue circle. 

Figure 8. UAV coverage in two sequential time intervals. 

More specifically, suppose the UAV position is ( )' ',u um n , 

and the target position is ( )' ',t tm n . The heading directions 

are assumed to be α  and β , respectively. Then, at the next 

time step, the UAV and target positions can be expressed as 
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Vnn
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The radius of the UAV’s coverage is assumed to be cR , and 

target uncertainty radius (say, 3-sigma boundary) is tR . The 

intersection points of the two circles may be found from the 
solutions of the following equations, 

( ) ( )
( ) ( )

2 2 2

2 2 2

u u c

t t t

x m y n R

x m y n R

⎧ − + − =⎪
⎨

− + − =⎪⎩

         (13) 

Obviously, in the case of no real solution from (13), the 
coverage probability is either one or zero, which depends on 
the distance between UAV and the target, namely 

( ) ( )2 2
0 t u t ud m m n n= − + −       (14) 

 

Figure 9 Geometry Illustration for two Angle Calculations. 

If 0 c td R R≥ + , the target is out of the FOV of the UAV 

so that the coverage probability is zero. If 0 c td R R≤ − , 
the target is completely in the FOV of the UAV so that the 
coverage probability is one. Otherwise, in the geometrical 
sense, angles 1θ  and 2θ  in Figure 9 can be calculated by 

the law of cosines, such that 
2 2 2

1 0
1

0

2cos
2

c t

c

R d R
R d

θ − ⎛ ⎞+ −= ⎜ ⎟
⎝ ⎠

 

and 
2 2 2

1 0
2

0

2cos
2

t c

t

R d R
Rd

θ − ⎛ ⎞+ −= ⎜ ⎟
⎝ ⎠

. Therefore, based on the 

determined angles, one can readily show the following 
result. 
 

Proposition 4. Suppose that the UAV’s coverage 
radius is Rc and target uncertainty radius is Rt . 
The coverage probabilities can be expressed as 

(i) In case of c tR R≥ , we have  
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(ii)  In case of c tR R< , we have 
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where ( ) ( )2 21 1
1 2 2 1 12 2sin sint cs R Rθ θ θ θ≡ − + −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  and 

( ) ( )2 21 1
2 2 2 1 12 2sin sint cs R Rθ θ θ θ≡ − − −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ . 

 

3.2 General coverage probabilities   
In practice, due to the road and/or turning angle limitations, 
a UAV or a target cannot move freely to anywhere in their 
reachable circles and, therefore, the circular representation 
of the target’s location uncertainty is insufficient. Our 
objective for choosing a desired UAV location (an input to 
the path-planning algorithm) was to maximize the 
probability of detection. Since the target’s state is not 
known with certainty, we cannot calculate the probability of 
detecting a target given a potential position for the UAV, 
but, instead, we calculate the expected probability of 
detection: 
 

[ ] ( ) ( )
s

dE P D p d
Ω

= ∫ x x x                (17) 

where sΩ  presents the sensor FOV, ( )p x  is the 
probability density function (PDF) of the target state (which 
may include both position and velocity), ( )D x represents a 
function that maps the target state into a probability of 
detection (this function could take into account the distance 
from the point x to the sensor so that resolution affects Pd, 
it could take into account whether there is obscuration 
between point x and sensor, etc.).  

Note that ( )p x  is obtained by extrapolating the target’s 
kinematic state based on the road network information.  The 
idea is to use a digital road map to constrain the possible 
target locations. In practice, it could be very difficult to 
model the density precisely due to road uncertainties. 
However, given a digital road map, Monte Carlo samples 
(particles) can be generated to describe possible target 
states, which yields two benefits. First, stochastic 
simulation allows us to handle more realistic on-road 
motion models (e.g., slowing at curves, pausing at 
intersections). Second, with a point-mass representation of 
the predicted target state PDF the integration part of (17) 
can be approximated by counting number of particles in the 
respective areas.  Of course, there is significant room for 
improvement in selecting a UAV’s destination objectives 
via a reliable estimate of its coverage probabilities. For 
instance, when UAV loses its target, simply counting 

particles, the resulting coverage rate is clearly biased and 
incorrect. 

3.3 Coverage rate with particles 
As mentioned in the previous section, we plan to use 
particles to simulate possible target locations at the next 
time step in order to obtain a UAV’s desired location. To do 
so, it is assumed that: (i) the UAV has been given the initial 
state (position/velocity) information about the target of 
interest; (ii) digital road map information is available; and 
(iii) in a tracking stage, the UAV could observe the latest 
target state information with its own sensor. 

In this paper, it is assumed that the initial target information 
is available from at least one of the resources (GMTI or 
otherwise). After the initialization, the UAV must track the 
target using only sensor data collected by the UAV’s 
onboard sensor.  If the UAV cannot acquire the target on its 
own after the initial assignment, then it is highly likely that 
it will never track the target. In that case, a separate 
initialization/re-assignment process is needed. 

The initial PDF of a target state is generally given based on 
the assumption that the target is following the roads in a 
given map, and its velocities are uniformly distributed 
between maximal and minimal speed limits. Thus, particles 
will be randomly drawn from this PDF. These particles are 
used to predict the target state forward in time based on the 
road network.  

3.3.1 Generate target-location particles 
To predict target state forward, we generate random 
samples based on a given road map information. These 
samples are obtained using the maximal and minimal target 
speeds together with random numbers characterized by 
appropriate distributions. If not explicitly mentioned, a 
Gaussian distribution is used to generate normal i.i.d. 
samples with mean zero and a given variance that could be 
estimated from the historical data. At any road intersection, 
we assume equal probability for all possible forward 
directions.  Since a target could possibly turn around, a U-
turn probability is also introduced.  

3.3.2 Select destination objective 
The desired UAV destination objective is a reachable 
position for the UAV within a given planning cycle that 
maximizes the probability of detecting the target, which 
amounts to the UAV location such that the maximum 
number of particles is within the UAV’s FOV.  Euclidean 
distances can be used to compare the destination objectives. 
Specifically, assume that there are N particles ( ){ }yxPi , , and 

M candidate objectives ( ){ }yxC j , , we have 

( ) ( ) ( )yxCyxPjid jicp ,,, −=→       (18) 
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Based on the UAV’s FOV radius, the coverage probabilities 
can then be estimated as a ratio of the number of particles 
inside the UAV’s FOV over the total number of particles, 

( ) ( )[ ] ≤→
=

i
Rjid ccpN

j ,
1Pr δ          (19) 

For each candidate objective, the distance from the UAV’s 
current position is   

( ) ( ) ( )yxCyxUjd jcu ,, −=→        (20) 

To determine the most desirable UAV destination objective 
based on (18) and (19), we must sample the set of reachable 
UAV states in order to render the number of potential 
locations to consider into a finite number. To select the 
destination candidates, one simple idea is to define them 
uniformly in the UAV reachable region based on maximum 
and minimum UAV speeds. 
 
4 Obstacle Avoidance 
In the meantime, we will consider the following problem: 
How to make a UAV track a target while avoiding obstacles 
(including no flight zones) at the same time? The 
information about the existence of the obstacles is either 
known in advance (e.g., buildings), or acquired during 
flight (e.g., collision avoidance with other aircraft). In most 
real scenarios more than one obstacle might appear, so 
multiple obstacles are considered. To handle situations of 
obstacle avoidance, an obstacle avoidance algorithm is 
added to the path-planning cycle to guide the UAV to move 
around the obstacle. This combination results in a scheme 
that reacts to the changing and uncertain environment. 

We assume that the UAV is capable of receiving obstacle 
information at any path-planning cycle, by either its own 
sensors or other resources. Without loss of generality, 
obstacles are modeled as circles determined by their center 
position and radius. Other shapes may be treated in a 
conservative manner by inscribing them in a larger circle, 
thereby permitting the obstacle avoidance problem to be 
formulated in terms of a simplified model of turning circles 
similar to the shortest-path algorithm we described earlier. 
The obstacle avoidance problem is then interpreted as the 
shortest-path selection among all possible paths. 
Specifically, we first determine the closest obstacle for the 
UAV to move around by using a straight line to link the 
UAV and the destination circle about the target. Then, we 
start from this obstacle to locate the next possible obstacle 
if any, between the target and current obstacle circle. By 
doing this forward search step-by-step, all the possible 
paths and corresponding distances will be calculated. 
Therefore, a practical solution with the shortest distance can 
be selected.  

More specifically, suppose the UAV is located at ( )' ',u um n , 

and the target is located at ( )' ',t tm n . The UAV and the 

target headings (angles) are assumed to be α  and β , 

respectively. During the path-planning cycle, assume L 
obstacle circles (no flight zones) appear unexpectedly. 
These obstacle circle parameters are assumed to be 

available, i.e., center coordinates, ( )[ ] [ ],i i
o om n , and radius, 

[ ]i
oR . For simplicity, the obstacle circles are assumed to be 

non-overlapping in this paper. The intersection points of the 
obstacle circles and the path-line between the UAV and the 
target may be found from the solutions of the following 
equations, 

( ) ( )2 2 2[ ] [ ] [ ] , 1,2,...,i i i
o o o

t t

u t u t

x m y n R i L

y y x x
y y x x

⎧ − + − = =
⎪
⎨ − −=⎪

− −⎩

        (20) 

If there is no real solution in (20) for an obstacle-i, it means 
that this obstacle will not affect the current path planning, 
and we may ignore it at this moment. Otherwise, based on 
the distance measurements between UAV and the 
intersection points, we can readily locate the closest 
obstacle, which is blocking the path (marked as the most 
effective obstacle), and initiate the obstacle avoidance 
algorithm to plan the UAV path around it. 

In general, the UAV will take the shortest distance by 
following the line path connecting the start point and the 
target point. In the case that a most effective obstacle is 
located, the path-planning algorithm will follow a tangent 
line to this obstacle. There are three basic situations to be 
considered: (i) the most effective obstacle (MEO) is 
independent; (ii) the most effective obstacle is dependent;  
and (iii) without effective obstacle. 

Figure 10 Two cases: (i) MEO independent, (ii) MEO dependent. 

In the situation of without effective obstacles, path planning 
operates in normal condition, and obstacle avoidance 
algorithm is not needed to find the shortest path between 
the UAV and the target. As illustrated in Figure 10 (left), 
the path-line of “x1 y1” crosses obstacle-A and obstacle-
B, the first MEO can be identified as obstacle-A. The 
obstacle avoidance algorithm will select a path around 
obstacle-A first, such that “x1 x2”. Similarly, by the 
straight-line “x2 y2”, the subsequent MEO is identified as 
obstacle-B, and the obstacle avoidance algorithm will find a 
path to go around it. Therefore, the overall path could be 
obtained as “x1 x2 x3 y3”. The case of dependent 
MEO is illustrated in Figure 10 (right). As the path-line of 
“x1 y1” crosses only obstacle-C, a MEO is identified as 
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obstacle-C. The obstacle avoidance algorithm will select a 
path around obstacle-C, e.g., “x1 x2”.  However, this new 
path will cross another obstacle-A, which will affect the 
current path plan. Therefore, adjustments of the path plan 
need to be made first to avoid obstacle-A. 

 
5 Numerical Results 
Multiple simulation scenarios are provided in this section to 
illustrate the performance of the newly proposed dynamic 
UAV path-planning algorithm for ground target tracking. 
First, we consider three examples of different target-moving 
models [8]: (i) a target is moving with a kinematic model 
(nearly constant velocity) in 2D free space; (ii) a target is 
moving within time-based waypoints; (iii) a target is 
moving within speed-based waypoints. Then, we consider 
different wind enviroments to present its robustness for 
UAV tracking a stationary and/or moving target. After that, 
we present detection probabilities using an example. 
Moreover, particle filters will be employed in two different 
map considerations. Finally, the obstacle avoidance 
algorithm will be validated as multiple obstacles may appear 
in dynamic path generations.  
 

Figure 11. T+LVFG  tracking performance in different cases. 

In the first scenario, a UAV initial position is assumed at 
[ ]0 0300, 200x y m= = −  and a height of 100m. It has a 
nominal speed of 14m/s with a heading angle [54 degree 
(East is 0 degree)]. The UAV maximal turning rate is 30 
degree per second. Both sampling rate and planning cycle 
are one second. Using T+LVFG, Figure 11 plots four cases 
as a target follows the kinematic model (upper two charts), 
speed-based waypoint model (lower left), and time-based 
waypoint model (lower right). In the upper left chart of the 
kinematic model, the initial target position is assumed as 

0 0200, 100t tx y m⎡ ⎤= =⎣ ⎦  with an initial speed of 5m/s at 

heading angle -45 degree. The target maximal speed is 
12m/s, and the state process noise standard deviation is 0.1. 
In addition,  a constant wind of strength 5.0 and angle 45 
degree is presented at the upper right chart.  In the speed-
based model, target is with a constant speed in each line 
space (road section). Specifically, in the moving segments 
of ( ) ( )0 0, : 100, 120t tx y⎡ ⎤− −⎣ ⎦ ( ) ( )1 1, : 50, 20t tx y⎡ ⎤− −⎣ ⎦ ( ) ( )0 0, : 10, 0t tx y⎡ ⎤⎣ ⎦

( ) ( )1 1, : 50,102t tx y⎡ ⎤−⎣ ⎦ ( ) ( )1 1, : 110,150t tx y⎡ ⎤−⎣ ⎦

( ) ( )1 1, : 300,200t tx y⎡ ⎤−⎣ ⎦
, the target speeds are 10m/s, 8m/s, 7m/s, 

2m/s, 15m/s, 12m/s, and 14m/s, respectively. In the time-
based model, the target arrives to these denoted points at 
time of 0s, 8s, 18s, 37s, 52s, 68s then stops at the final 
position. Results show that the T+LVFG algorithm provides 
an efficient and effective solution in those cases considered. 

Figure 12. Performance comparisions within different winds. 

To demonstrate the robustness under wind conditions of the 
T+LVFG algorithm, we now consider a case in which the 
UAV tracks a stationary target. Suppose that a UAV’s 
relative-angle to target is π , turn-limit is 30 degree per 
second and speed 14m/s. Figure 12 plots the UAV and 
target trajectories in different wind environments. In the 
upper left, are the trajectories using LVFG and T+LVFG 
under a wind condition of 1.0 /w m sρ = and 4w

πθ = − . 
While in this case the T+LVFG yields similar paths with or 
without the presense of wind, the LVFG alone has a big 
distortion and a shifted-orbit as we expect. In the upper 
right, the wind strength is increased to 2.0 /w m sρ = and 
the flowing angle is / 4π− . Notice that while the T+LVFG 
algorithm has a slightly distorted path along the objective 
circle, the LVFG alone diverges in these mild wind 
considerations. As shown in the lower left-hand plot, at a 
high wind speed of 13.0m/s, the T+LVFG algorithm 
struggles but manages to eventually get the target within the 
FOV, though the trajectory fails to accurately follow the 
objective circle. Unfortunately, when the wind speed is the 
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same or higher than UAV’s speed, the UAV cannot 
compensate for the wind and, therefore, cannot reach the 
objective circle. An example result when the wind speed is 
the same as the UAV speed limit of 14m/s is shown in the 
lower right plot in which both algorithms diverge.  

Figure 13. Performance comparisions for a  moving target. 

Next, we apply the newly proposed T+LVFG algorithm for 
a UAV that tracks a moving target under windy conditions. 
The UAV has the same parameters as in the case of tracking 
a stationary target. Figure 13 shows the tracking results for 
a moving target with and without winds. In the upper left, 
the moving target is with a constant velocity 5m/s, starts 
from (0,0), and moves along a direction angle of 10t

πθ = . 
Since the UAV is much faster than the target, both 
algorithms demonstrate that the UAV’s trajectories are 
screw lines along the target trajectory. However, the 
T+LVFG algorithm provides closer and more efficient 
tracks that the LVFG alone. In the upper right, a faster 
target, which has a constant velocity of 12m/s, is 
considered. The target starts from (0,0) and heads due east. 
Again the path corresponding to the T+LVFG algorithm is 
generally closer to the target. In the lower charts, winds 
with 2m/s and 13m/s are considered. The T+LVFG 
algorithm works well, but the LVFG alone fails in both 
cases.  

Figure 14. Tracking results using paricle filters. 

Figure 14 illustrates simulation results using a point-mass 
approximation of the target predicted PDF and choosing a 
desired UAV location based on maximizing the probability 
of detecting the target. The two plots show the 
corresponding tracking results via the particle filter strategy. 
In each planning step, we generate 100 particles for the 
predicted target location and select 50 destination candidates 
uniformly in the UAV’s reachable region. At each planning 
cycle, we select the UAV destination based on maximizing 
the probability of detecting the target. 
  

Figure 15. Path planning and tracking results using the obstacle 
avoidance strategy. 

Finally, we evaluate the obstacle avoidance strategies in the 
dynamic path-planning algorithm. Suppose that there are 
three obstacles in a path-planning environment. The 
simulated obstacles are defined as Obstacle-1, centered at 
[10,40]m and radius is 45m, Obstacle-2, centered at 
[110,30]m and radius is 50m, and Obstacle-3, centered at 
[68,140]m and radius is 50m. In the left of Figure 15, the 
initial position of UAV is fixed at [-160,-140]m, and a 
heading of 50 degrees. A target is following a road map. 
The optimal paths are plotted with different target positions, 
and obstacles are succesfully avoided. In the right of Figure 
16, the same obstacles are presented. A target is moving 
with a kinematic model in 2D free space [8]. the initial 
target position is assumed as 0 0200, 100t tx y m⎡ ⎤=− =⎣ ⎦  with an 

initial speed of 5m/s and heading of -45 degrees. The target 
maximal speed is 12m/s, and the state process noise 
standard deviation is 0.1. The UAV is initially located at 
[500,200]m with velocity [14,0]m/s and heading of 90 
degrees.  
 
6 Conclusions 
In this paper, we have proposed a dynamic UAV path-
planning algorithm for tracking a ground target. The 
algorithm is characterized by a combination of TVFG and 
LVFG, a point-mass approximation of the target state PDF, 
and obstacle avoidance strategies.  The key advantage of 
the proposed method is the ability to find the shortest path 
for a UAV tracking a target, to utilize particle filters for 
target motion predictions for the case in which road 
network information is available, and to avoid identified 
obstacles in the path generations. Theoretic analysis shows 
that the T+LVFG algorithm outperforms the LVFG alone 
whenever the tangent lines are available between the 
UAV’s turning limit circle and an objective circle. The 
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steady-state objective biases of the both T+LVFG and 
LVFG algorithms are formally derived, as well as the 
coverage probability calculations. The fact that tangent 
lines and particle filters are mainly considered to generate 
path candidates for UAV tracking makes this approach very 
attractive. The proposed solution methodology can be easily 
embedded in a mission planning strategy. This dynamic 
path planning uses fixed-increment time advance, which fits 
well with any heuristic solution algorithms. Simulation 
results demonstrate the efficiency  and robustness of the 
new algorithm as a UAV tracks a target in large variety of 
different experimental scenarios, including different target 
moving models, winds environments,  pre-known road 
maps and multiple obstacles on the way. Future work will 
focus on multiple UAVs and multiple target situations.    
 

References 
[1]  B. Geiger, and et al, “Optimal Path Planning of UAVs 
Using Direct Collocation with Nonlinear Programming”, 
AIAA Paper No.2006-6199, AIAA GNC Conference, 
Aug. 2006. 

[2]  S. J. Rasmussen, and at el, “Introduction to the 
MultiUAV2 Simulation and Its Application to 
Cooperative Control Research”, 2005 American Control 
Conference, Portland, USA, June 8-10, 2005. 

[3]  C. Ferng, and et al, “Distributed Simulation of 
Forward Reachable Set-Based Control for Multiple 
Pursuer UAVs”, SimTecT 2006. 

[4]  R. Wise, “UAV Control and Guidance for 
Autonomous Cooperative Tracking of a Moving Target”, 
PhD research proposal, University of Washington, 2006. 

[5]  M. Winstrand, “Mission Planning and Control of 
Multiple UAVs”, Scientific report, Swedish Defence 
Research Agency, 1650-1942, October 2004.  

[6]  R.H. Stone, and G. Clarke, “Optimization of 
Transition Maneuvers for a Tail-Sitter Unmanned Air 
Vehicle (UAV)”, Department of Aeronautical 
Engineering, University of Sydney.  

[7]  E. Frew, D. Lawrence and S. Morris, “Coordinated 
Standoff Tracking of Moving Targets using Lyapunov 
Guidance Vector Fields”, Journal of Guidance, Control, 
and Dynamics, Vol.31, No.2, March-April 2008. 

[8]  H. Chen, KC Chang, and C. S. Agate, “A Dynamic 
Path Planning Algorithm for UAV Tracking”, SPIE 2009. 

[9]  G. Collins, and et al, “Cooperative Control of UAVs 
for Tracking Moving Targets through Information Gain”, 
Phase II STTR Final Report, Toyon Research 
Corporation, December 28, 2007. 

[10]  A. G. Shem, T. A. Mazzuchi and S. Sarkani, 
“Addressing Uncertainty in UAV Navigation Decision-
Making”, IEEE Transaction on Aerospace and Electronic 
Systems, Vol.44, No.1, pp.295-311, January 2008.

 

372


